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A numerical solution of the complete Navier-Stokes equations of motion by 
means of an implicit finite-difference method is presented for the following 
developing-flow problem: a piston forced with constant speed through an 
infinitely long tube of circular cross-section. The transition of the velocity profile 
of an incompressible isothermal Newtonian fluid from the plug-flow profile in 
front of the piston to the parabolic profile of developed flow is analysed. Stream- 
lines, vorticity distributions, velocity profiles, the excess pressure drop and the 
entrance length are given for Reynolds numbers from 0 to 800. 

1. Introduction 
The development of plane or axisymmetric steady laminar flow of a liquid 

flowing into a channel between two semi-infinite parallel plates or into a semi- 
infinite tube is one of the most widely studied problems of hydrodynamics. This 
is due to both its technical importance and its ability to demonstrate certain 
mportant effects of viscous flow. 

Since the pioneering work of Prandtl, boundary-layer theory has been the 
principal tool for solving this developing-flow problem in the high Reynolds 
number limit, replacing the elliptic Navier-Stokes equations by their parabolic 
asymptotic forms, the boundary-layer equations. A thorough analysis of this 
method for plane entry flow has been given by Van Dyke (1970) and Wilson 
(1971), who resolved a paradox in the classical solution of Schlichting (1934). 
Reference to experimental data has been provided by Sparrow, Lin & Lundgren 
(1964) and by Schmidt & Zeldin (1969). 

The widespread use of digital computation and sophisticated numerical 
methods led t o  the solution of the complete Navier-Stokes equations of motion 
in the lower Reynolds number regime. The flow at the entrance of a pipe was 
analysed by numerous investigators both by finite-difference and by finite- 
element methods. Reference is made here only to the work of Vrentas & Duda 
(1973), who presented summaries of such entrance-flow studies along with finite- 
difference solutions of entrance-flow problems for Newtonian and non-Newtonian 
fluids. 

One difficulty associated with this kind of developing-flow problem is the 
specification of appropriate inlet conditions. This is due to the fact that the 
developing velocity field in the entrance section of the conduit will significantly 
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influence the velocity field in the upstream region. Various inlet conditions 
were therefore used in these investigations. For example, Friedmann, Gillis & 
Liron (1968) assumed an initially uniform velocity profile, whereas Vrentas, 
Duda 8: Bargeron (1966) used a streamtube model. In the boundary-layer 
approximation, Van Dyke (1970) and Wilson (1971) considered three different 
inlet conditions at the channel entrance, namely uniform velocity, irrotational 
flow and an infinite cascade of parallel plates (which is equivalent to the stream- 
tube model in axisymmetric flow). As Wilson (1971) pointed out, the least 
satisfactory model (uniform entry) is the one most commonly studied, in contrast 
to  the most suitable one (infinite cascade). 

So far, a different developing-flow problem with clearly defined boundary 
conditions has received little attention: fluid forced through an infinitely long 
tube by a piston moving with constant speed. The velocity profile, which is flat 
at the front of the piston, changes with increasing distance from the piston 
until a fully developed, parabolic velocity distribution is reached (figure 1 a). 
Correspondingly, the pressure gradient in the hydrodynamic entrance region 
differs from that in the region of fully developed flow. Establishing the detailed 
nature of this kind of flow is of considerable interest because of its technical 
importance. The present study was inspired especially by the plastics injection 
moulding process and capillary rheometry . Typical Reynolds numbers for these 
applications (10-6-10) are close to the creeping-flow limit, but computation was 
extended to higher Reynolds numbers, up to Re = 800. 

The only other theoretical work on the subject known to the author is the 
investigation of Gerrard (1 971), who analysed the unsteady axisymmetric pipe 
flow close to a piston by an explicit finite-difference method. In contrast to the 
present study, which considers the steady flow problem, Gerrard was concerned 
with the time dependence of flow started from rest by both impulsive and gradual 
motion of the piston to Reynolds numbers of 525 and 1000. Experimentally 
observed ring vortices (Hughes & Gerrard 1971) in the impulsively started flow 
for Reynolds numbers above approximately 450 were ody  reproduced by com- 
putation after an additional random disturbance had been applied to the flow 
field at  each time step. These ring vortices died out at later times, but no details 
of steady flow patterns requiring long computation times were given. 

Further experimental work on the piston flow problem was reported by 
Tabaczynski, Hoult & Keck (1970)) who studied the transition to turbulence in 
the ring vortices produced by the starting motion of the piston at even higher 
Reynolds numbers. The flow close to an oscillating piston in a tube was investi- 
gated by Gerrard & Hughes (1971). 

In  the present study, the steady-state vorticity equation and the continuity 
equation were solved for the piston flow problem by an implicit finite-difference 
method for Reynolds numbers from 0 to 800. An implicit method, similar to the 
one used by Vrentas et aZ. (1966), was chosen instead of an explicit method 
because of greater numerical stability and less dependence on the mesh size. 
The computations were performed on a CDC 6600 computer at the Rechenin- 
stitut der Universitiit Stuttgart; run times of up to  5 min were required for a 
mesh with 3721 grid points. 
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FIGURE 1. Transition from plug flow t o  tube flow. 

2. The basic equations 
Isothermal steady-state laminar flow of an incompressible Newtonian fluid 

with constant viscosity is considered. The fluid is forced through an infinitely 
long tube by a piston moving with constant speed. An identical flow field will 
be achieved when, instead of keeping the tube fixed in space and the piston 
moving (figure l u ) )  the piston is fixed in space and the tube is moved in the 
opposite direction with the same speed (figure 1 b) .  The fist case will be referred 
to as the ‘tube space ’ problem, the second, which is more convenient for analysis 
and will be used subsequently if not stated otherwise, as the ‘piston space’ 
problem, according to the frame of reference. The two spaces are connected to 
each other by a simple co-ordinate transformation. 

Restricting the analysis to a circular conduit with no leakage between the 
tube wall and the piston, and neglecting the body-force term, the dimensionless 
equations of motion and the continuity equation reduce to 

av av 2 a i a  
ar az ar Re ar rar 

w- + u- = - 2 + - (- [ -- (rv)] + g) , 
2 i a  au au au 

ar ax az Re r a r  ar a’ + - (- - [ r -1 + g) , v-++- = -- 

i a  au 
r ar a2 
--(rw)+- = 0, (3) 

with the boundary conditions 

(4) 

( 5 )  

( 6 )  

(7) 

u = 0, v = O  for z = O ,  O G r e l ,  

u= 1-2r2, v =  0 for x =  co, O <  r < 1, 

u= - 1  ) v = O  for O < z c c o ,  r = 1 ,  

a u p  = 0, v = 0 for 0 < z c co, r = 0, 
17-2 
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where (dimensiona'l quantities having an asterisk) 

denote the axial and radial velocity components, 

the axial and radial distance variables, 

the dimensionless pressure and 
p = p*/puz 

Re = 2pR?i/,u 

the Reynolds number. Here U is the velocity of the piston in 'tube space ', which 
is equal to the absolute value of the velocity of the tube walls in 'piston space'. 
R is the radius of the tube, p the density and ,u the viscosity. The origin of the 
co-ordinate system is assumed to be at  the fixed piston head, 

Equations (1)-(3) lead to the familiar vorticity transport equation 

on eliminating the pressure gradients and introducing the dimensionless stream 
function @ and the dimensionless vorticity w :  

It follows from (13)-(15) that the vorticity w is related to the stream function 

(16) 

The two coupled elliptic equations (12) and (16), together with suitable boundary 
conditions for the stream function @ and the vorticity w,  give a complete des- 
cription of the velocity field for the system under consideration. 

a2$ a2$ l a +  
a x 2  ar2 r ar ' 

@ by 
wr=-+.---- 

3. Boundary conditions for stream function @ and vorticity w 

The main difficulty in solving the boundary-value problem for the fourth- 
order system of differential equations (12) and (16) is the specification of suitable 
boundary conditions. So far it is unclear for which boundary conditions the 
problem is well defined. It is assumed here that Dirichlet or Neumann boundary 
conditions for II. and w over the entire region of the flow field are sufficient to 
generate unique and stable solutions. The following boundary conditions were 
used : 

q+ = 0, w = r-la2$/ax2 for z = 0, 0 < r c 1, (17) 

II. = i ( r - r 2 ) ,  w = 4r for z =  co, 0 6 r < 1, (18) 

@ = O ,  w = - l - ~ + ~ $ l a r ~  for O < z < m ,  r = I ,  (19) 

+ = w = O  for O < z < c o ,  r = 0 .  (20) 
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A singularity occurs at the piston-wall junction, where the velocity has the 
two values of zero (fixed piston head) and the wall speed, because of the idealized 
abstraction used of motion of a piston in a tube without leakage. Different 
boundary values at  the corner were used for the vorticity, which changes from 
high positive to low negative values near the corner at  low Reynolds numbers 
(figure 3a).  At higher Reynolds numbers, this change occurs further inwards on 
the piston head (figure 3 b ) .  It was found that the area affected was small and 
restricted to the immediate vicinity of the corner, and that the best results were 
obtained by treating the corner as a regular wall point. 

Owing to the necessity of using a numerical procedure to solve the system of 
nonlinear partial differential equations, a co-ordinate transformation has to be 
applied to map the infinite region 0 6 z < co onto a finite region. The following 
transformation has proved to be useful: 

f ;  = tanhaz. (21) 

The complete flow field is therefore mapped onto the region 0 < 6 6 1.  By a 
proper choice of the constant a, the region near 2 = 0, which is of special im- 
portance for this flow, can be stretched deliberately. The differentials a/az and 
P/az2  have to be replaced everywhere by 

8/82 = a( 1 - 6 2 )  8/86 

a 2 p 2  = a2( 1 - $ 2 ) ~  a z p p  - 2 a q i -  6 2 )  apg. 
(22) 

(23) and 

4. Numerical solution by an implicit finite-difference method 
A grid with K columns (subscript k) and L rows (subscript 2) was imposed on 

the flow field. A standard central-difference approximation with a leading error 
of second order was applied to the space derivatives. The finite-difference equa- 
tions which result from (12) and (16) can be represented for every interior point 
(k, 1) of the grid by 

@k,l = Wk+l,I+l~k+l,2+1+ Wk-1,1+1@k-1,2+1 

h c ,  2 = 4 + 1 ,  z+1 &+I, If1 + 4-1,1+1 @k-1, If1 

+ %+l,Z-Pk+l, 1-1 + Wk-1,I-1 %-l,Z-l 

+ G + l ,  2-1 h + l ,  If1 + Pk-1,z-1 Pk-1, I-1 

+ K, 2 @k, 2 ,  

(24) 

and 

(25) 

where the coefficients Pkfl,lfl and the coefficient Wk,t are functions of r and $ 
only while the coefficients Wk,l,2,1 are functions of r, $ and all the $k*l,a*l. All 
coefficients are explicitly given by Vrentas et al. (1966). 

An ‘extrapolated Liebmann ’ or ‘successive over-relaxation ’ (SOR) method 
(Smith 1974, p. 149) was used to solve the system of equations (24) and (25) 
iteratively for all points of the finite-difference network. For this purpose, 
initial values were assumed for @ and o throughout the interior of the grid and 
for w on tb.e tube wall and the piston head. By use of (25) ,  new values of $ were 
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E = 0.5 

r = O  
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0 8  
0.9 
1.0 

r = 0.5 

{ = O  
0.1 
0-2 
0.3 
0.4 
0.5 
0-6 
0-7 
0.8 
0.9 
1.0 

7- 

21 x 21 
mesh points 

0 
- 0.003116 
- 0.012320 
- 0.027148 
- 0.046580 
- 0.068640 
- 0.089790 
- 0.104150 
- 0.102704 
- 0.073018 

0 

0 
- 0.006194 
- 0.020734 
- 0.038 152 
- 0.054744 
- 0.068640 
- 0.079238 
- 0.086624 
- 0.091 180 
- 0‘093388 
- 0.093750 

A 
1 

41 x 41 61 x 61 
mesh points mesh points 

0 
- 0.0031 12 
-0.012314 
- 0,027144 
- 0.046588 
- 00068670 
- 0.089850 
-0,104226 
- 0.102768 
- 0.073036 

0 

0 
-0.006170 
- 0.020680 
- 0.038118 
- 0.054750 
- 0.068670 
- 0.079268 
- 0.086634 
- 0.091162 
- 0,093340 
- 0.093750 

0 
- 0*003110 
-0.012312 
- 0.027144 
- 0.046590 
- 0.068678 
- 0.089866 
- 0.104246 
- 0.102782 
- 0.073042 
0 

0 
- 0.006166 
- 0.020672 
- 0.038114 
- 0.054754 
- 0.068678 
- 0.079276 
- 0.086638 
-0.091160 
- 0.093330 
- 0.093750 

TABLE 1. Effect of mesh size (Re = 10, a = 1, F = 1.22) 

calculated and further improved by the SOR method, which is essentially an 
extrapolation scheme 

F is the over-relaxation factor. As equations (24) are coupled to (25) by the 
boundary conditions (17) and (19), which read in finite-difference form 

II. = W n e w + ( 1 - F ) I I . o l &  (26) 

and 

improved values for w could be obtained subsequently at the tube wall and the 
piston head. The extrapolation scheme described above was now applied to all 
w values at the interior points of the region. 

This procedure was iterated and proved stable and convergent for a proper 
choice of the over-relaxation factor F ,  which was of the order of 1.22. Improved 
values were used as soon as available. The finite-difference solution was con- 
sidered to have converged when the @ and w values changed by less than 0.1 % 
at all grid points from one iteration to the next. Special attention was given to 



Developing $ow in circular conduits 263 

zlR 
FIGURE 2. Streamlines for (a) Re = 10 and ( b )  Re = 400. 

the mesh size necessary to keep the discretization error small. All calculations 
were performed with a 61 x 61 point grid. Some typical effects of increasing the 
mesh size are shown in table 1. The $ values at coinciding grid points for a 
41 x 41 and a 21 x 21. grid differ by less than 0-1 yo and 1 % respectively from the 
$ values for the 61 x 61 grid. 

5. Results and discussion 
Calculations were performed for Reynolds numbers from 0 to 800, and the 

results of the numerical solution of the full Navier-Stokes equations are pre- 
sented in figures 2-7. 

No flow separation was observed at the 90" corner between the piston head 
and the tube wall, in accordance with the work of Gerrard (1971). Typical dis- 
tributions of streamlines are given in figures 2 (a) and ( b )  for Reynolds numbers 
of I 0  and 400 respectively; the basic streamline pattern remains practically 
unchanged for all Reynolds numbers considered except for stretching in the 
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FIGURE 3. Equi-vortioity lines for (a)  Re = 10 and ( 6 )  R e  = 400. 

axial direction. The corresponding vorticity distributions are illustrated in 
figures 3(a) and (b ) .  At low Reynolds numbers (figure 30,)' the diffusive terms 
in the vorticity transport equation (12) are dominant. At higher Reynolds num- 
bers, distortion of the vorticity distribution is caused by the convective terms 
(figure 3 b )  . 

The velocity distribution was calculated by use of (13) and (14) and retrans- 
formed into 'tube space'. Results are given in figures 4 and 5. At low Reynolds 
numbers, the axial velocity profile remains essentially flat for some distance z 
in front of the piston head with a slight concavity near the centre of the tube 
for small z (figure 4a) .  At higher Reynolds numbers, this concavity becomes 
much more pronounced and the velocity distribution exhibits two symmetrical 
maxima separated by a local minimum on the tube axis (figure 4b) .  Similar 
behaviour was observed by Friedmann et al. (1968) as well as Vrentas & Duda 
(1973) for their respective entrance-flow models. As Vrentas & Duda (1973) 
pointed out, this phenomenon occurs in regions where the vorticity is small 
compared with a w l a x  and av/& is positive. From (15)' this obviously leads to 
the result that dular must be positive so that the axial velocity does not decrease 
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FIGURE 4. Development of axial velocity for (a) Re = I0 and ( b )  Re = 400. 

monotonically from its centre-line value. The radial velocity profile for Re = 10 
is presented in figure 5. 

The dimensionless entrance length 2, is defined in the usual way as the dimen- 
sionless axial position, measured from the position of the piston head, at  which 
the axial velocity at  the centre-line reaches 99 yo of its fully developed value. 
The entrance length 2, shows a linear increase with increasing Reynolds number 
for high Re. and a limiting value of 2, = 1.45 for Re = 0 (figure 6). 
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FIGURE 5. Development of radial velocity for Re = 10. 

FIGURE 6. Dependence of dimensionless entrance length ZE 
on Reynolds number Re. ---, ZE = 0.0475 Re- 0.8. 
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FIGURE 7. Axial decay of excess pressure for Re = 10-6. 

The excess pressure drop APE, that is, the total pressure drop in the system 
minus the pressure drop that would result in fully developed tube flow, is given 

where I, is the second invariant of the rate-of-strain tensor: 

I2 = 2 [ g ) 2 + ( g ) 2 ] + [ g + g ] 2 .  

Convergence of the double integral comprising the infinite flow field is secured, 
as I, rapidly approaches a value of 

lim I2 = 32r2. 
z-xc 

For Re = 

dependence of 
when the kinetic-energy term in (29 )  can be neglected, the axial 

which is due to viscous dissipation only, is shown in figure 7. The double integral 
is weakly dependent on the Reynolds number, increming with increasing Re. 

The dimensionless extra length of tube needed to account for the excess 
pressure drop is given by 

Therefore 2, is of the order of one tube radius for small Re and approximately 
equal to &Re for high Reynolds numbers. 

z, = RApE/8pE. (33 )  
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